APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Dan Leotta

Senior Engineer

Email

dfleotta@apl.washington.edu

Phone

206-616-3475

Education

Bachelor of Science Bioengineering, Syracuse University, 1982

Master of Science Electrical Engineering, Massachusetts Institute of Technology, 1985

Doctor of Philosophy Bioengineering, University of Washington, 1998

Publications

2000-present and while at APL-UW

Evaluation of examiner performance using a duplex ultrasound simulator. Flow velocity measurements in dialysis access fistula models

Leotta, D.F., R.E. Ziegler, K. Sansom, A. Aliseda, M.D. Anderson, and F.H. Sheehan, "Evaluation of examiner performance using a duplex ultrasound simulator. Flow velocity measurements in dialysis access fistula models," Ultrasound Med. Biol., 44, 1712-1720, doi:10.1016/j.ultrasmedbio.2018.04.012, 2018.

More Info

1 Aug 2018

We developed a duplex ultrasound simulator for training and assessment of scanning skills. We used the simulator to test examiner performance in the measurement of flow velocities in dialysis access fistulas. Test cases were created from 3-D ultrasound scans of two dialysis access fistulas by reconstructing 3-D blood vessel models and simulating blood flow velocity fields within the lumens. The simulator displays a 2-D B-mode or color Doppler image corresponding to transducer position on a mannequin; a spectral waveform is generated according to Doppler sample volume location and system settings. Examiner performance was assessed by comparing the measured peak systolic velocity (PSV) with the true PSV provided by the computational flow model. The PSV measured by four expert examiners deviated from the true value by 7.8 ± 6.1%. The results indicate the ability of the simulator to objectively assess an examiner's measurement accuracy in complex vascular targets.

An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

Li, J., X. Zhang, L. Qiu, and D.F. Leotta, "An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue," Opt. Commun., 370, 276-282, doi:10.1016/j.optcom.2016.03.030, 2016.

More Info

1 Jul 2016

Highlights

A camera-based mapping of venous oxygenation saturation SvO2 was further developed.

Monte Carlo method was used for modeling the imaging system.

Curvature and motion correction algorithms were included in the image process.

The spatial resolution for SvO2 map achieved was 1.25 mm×1.25 mm.

The measured SvO2 was validated by a NIRS system and in line with published data.

Development of a duplex ultrasound simulator and preliminary validation of velocity measurements in carotid artery models

Zierler, R.E., D.F. Leotta, K. Sansom, A. Aliseda, M.D. Anderson, and F.H. Sheehan, "Development of a duplex ultrasound simulator and preliminary validation of velocity measurements in carotid artery models," Vasc. Endovascular Surg., 50, 309-316, doi:10.1177/1538574416647502, 2016.

More Info

1 Jul 2016

Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills.

More Publications

Inventions

Fenestration template for endovascular repair of aortic aneurysms

Patent Number: 9,811,613

Dan Leotta, Benjamin Starnes

More Info

Patent

7 Nov 2017

To provide simple yet accurate stent graft fenestration, a patient-specific fenestration template is used as a guide for graft fenestration. To generate the fenestration template, a patient's medical imaging data such as CT scan data may be used to generate a 3-D digital model of an aorta lumen of the patient. The aorta lumen may encompass one or more branch vessels, which may be indicated on the 3-D digital model. Based on the 3-D digital model or a segment thereof, the fenestration template may be generated, for example, using 3-D printing technology. The fenestration template may include one or more holes or openings that correspond to the one or more branch vessels. To fenestrate a stent graft, the fenestration template is coupled to the stent graft so that the holes or openings on the fenestration template indicate the fenestration locations.

Supplemental Know How for Pushing, Imaging, and Breaking Kidney Stones

Record of Invention Number: 47878

Mike Bailey, Larry Crum, Bryan Cunitz, Barbrina Dunmire, Vera Khokhlova, Wayne Kreider, John Kucewicz, Dan Leotta

Disclosure

9 Nov 2016

Automated Monitoring of Vascular Flow and Morphology by 3D Ultrasound

Record of Invention Number: 47678

Shahram Aarabi, Dan Leotta, Nathan White

Disclosure

13 Apr 2016

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close