Campus Map

Mike Steele

Senior Principal Oceanographer






Dr. Steele is interested in the large-scale circulation of sea ice and water in the Arctic Ocean. He uses both observed data and numerical model simulations to better understand the average circulation pathways as well as the causes of interannual variations in these pathways. Analysis of ocean observations has focused on the upper layers, which are generally quite cold and fresh.

Dr. Steele has active field programs in which data are collected in the field by his team and others, using aircraft, ships, and autonomous sensors like buoys and profiling floats. He is also involved with efforts to improve computer models of the arctic marine system, via the Arctic Ocean Model Intercomparison Project, AOMIP.

Funding for his research comes from the National Science Foundation, NASA, and the National Oceanic and Atmospheric Agency (NOAA). He is involved with many outreach programs such as lectures to K-12 and college students. Mike Steele began work at the Polar Science Center in 1987.

Department Affiliation

Polar Science Center


B.A. Physics, Reed College, 1981

Ph.D. Geophysical Fluid Dynamics, Princeton University, 1987


North Pole Environmental Observatory

The observatory is staffed by an international research team that establishes a camp at the North Pole each spring to take the pulse of the Arctic Ocean and learn how the world's northernmost sea helps regulate global climate.


Producing an Updated Synthesis of the Arctic's Marine Primary Production Regime and its Controls

The focus of this project is to synthesize existing studies and data relating to Arctic Ocean primary production and its changing physical controls such as light, nutrients, and stratification, and to use this synthesis to better understand how primary production varies in time and space and as a function of climate change.


A Modular Approach to Building an Arctic Observing System for the IPY and Beyond in the Switchyard Region of the Arctic Ocean

This project will provided for the design, development, and implementation of a component of an Arctic Ocean Observing System in the Switchyard region of the Arctic Ocean (north of Greenland and Nares Strait) that will serve the scientific studies developed for the IPY (International Polar Year), SEARCH (Study of Environmental ARctic Change), and related programs. Specifically, the project will continue and expand two aircraft-based sections between Alert and the North Pole for long-term observation of hydrographic properties and a set of tracers aimed at resolving relative age structure and freshwater components in the upper water column.


More Projects


Polar Science Weekend @ Pacific Science Center

This annual event at the Pacific Science Center shares polar science with thousands of visitors. APL-UW researchers inspire appreciation and interest in polar science through dozens of live demonstrations and hands-on activities.

More Info

10 Mar 2017

Polar research and technology were presented to thousands of visitors by APL-UW staff during the Polar Science Weekend at Seattle's Pacific Science Center. The goal of is to inspire an appreciation and interest in science through one-on-one, face-to-face interactions between visitors and scientists. Guided by their 'polar passports', over 10,000 visitors learned about the Greenland ice sheet, the diving behavior of narwhals, the difference between sea ice and freshwater ice, how Seagliders work, and much more as they visited dozens of live demonstrations and activities.

The Polar Science Weekend has grown from an annual outreach event to an educational research project funded by NASA, and has become a model for similar activities hosted by the Pacific Science Center. A new program trains scientists and volunteers how to interact with the public and how to design engaging exhibits.

Arctic Sea Ice Extent and Volume Dip to New Lows

By mid-September, the sea ice extent in the Arctic reached the lowest level recorded since 1979 when satellite mapping began.

More Info

15 Oct 2012

APL-UW polar oceanographers and climatologists are probing the complex ice–ocean–atmosphere system through in situ and remote sensing observations and numerical model simulations to learn how and why.

Changing Freshwater Pathways in the Arctic Ocean

Freshening in the Canada Basin of the Arctic Ocean began in the 1990s. Polar scientist Jamie Morison and colleagues report new insights on the freshening based in part on Arctic-wide views from two satellite system.

More Info

5 Jan 2012

The Arctic Ocean is a repository for a tremendous amount of river runoff, especially from several huge Russian rivers. During the spring of 2008, APL-UW oceanographers on a hydrographic survey in the Arctic detected major shifts in the amount and distribution of fresh water. The Canada basin had freshened, but had the entire Arctic Ocean?

Analysis of satellite records shows that salinity increased on the Russian side of the Arctic and decreased in the Beaufort Sea on the Canadian side. With an Arctic-wide view of circulation from satellite sensors, researchers were able to determine that atmospheric forcing had shifted the transpolar drift counterclockwise and driven Russian runoff east to the Canada Basin.

More Videos


2000-present and while at APL-UW

A meteoric water budget for the Arctic Ocean

Alkire, M.B., J. Morison, A. Schweiger, J. Zhang, M. Steele, C. Peralta-Ferriz, and S. Dickinson, "A meteoric water budget for the Arctic Ocean," J. Geophys. Res., EOR, doi:10.1002/2017JC012807, 2017.

More Info

6 Oct 2017

A budget of meteoric water (MW = river runoff, net precipitation minus evaporation, and glacial meltwater) over four regions of the Arctic Ocean is constructed using a simple box model, regional precipitation-evaporation estimates from reanalysis data sets, and estimates of import and export fluxes derived from the literature with a focus on the 2003–2008 period. The budget indicates an approximate/slightly positive balance between MW imports and exports (i.e., no change in storage); thus, the observed total freshwater increase observed during this time period likely resulted primarily from changes in non-MW freshwater components (i.e., increases in sea ice melt or Pacific water and/or a decrease in ice export). Further, our analysis indicates that the MW increase observed in the Canada Basin resulted from a spatial redistribution of MW over the Arctic Ocean. Mean residence times for MW were estimated for the Western Arctic (5–7 years), Eastern Arctic (3–4 years), and Lincoln Sea (1–2 years). The MW content over the Siberian shelves was estimated (~14,000 km3) based on a residence time of 3.5 years. The MW content over the entire Arctic Ocean was estimated to be ≥ 44,000 km3. The MW export through Fram Strait consisted mostly of water from the Eastern Arctic (3237 ± 1370 km3 yr-1) whereas the export through the Canadian Archipelago was nearly equally derived from both the Western Arctic (1182 ± 534 km3 yr-1) and Lincoln Sea (972 ± 391 km3 yr-1).

Changing seasonality of panarctic tundra vegetation in relationship to climatic variables

Bhatt, U.S., D.A. Walker, M.I. Raynolds, P.A. Bieniek, H.E. Epstein, J.C. Comiso, J.E. Pinzon, C.J. Tucker, M. Steele, W. Ermold, and J. Zhang, "Changing seasonality of panarctic tundra vegetation in relationship to climatic variables," Environ. Res. Lett., 12, doi:10.1088/1748-9326/aa6b0b, 2017.

More Info

5 May 2017

Potential climate drivers of Arctic tundra vegetation productivity are investigated to understand recent greening and browning trends documented by maximum normalized difference vegetation index (NDVI) (MaxNDVI) and time-integrated NDVI (TI-NDVI) for 1982–2015. Over this period, summer sea ice has continued to decline while oceanic heat content has increased. The increases in summer warmth index (SWI) and NDVI have not been uniform over the satellite record. SWI increased from 1982 to the mid-1990s and remained relatively flat from 1998 onwards until a recent upturn. While MaxNDVI displays positive trends from 1982–2015, TI-NDVI increased from 1982 until 2001 and has declined since. The data for the first and second halves of the record were analyzed and compared spatially for changing trends with a focus on the growing season. Negative trends for MaxNDVI and TI-NDVI were more common during 1999–2015 compared to 1982–1998.

Trend analysis within the growing season reveals that sea ice decline was larger in spring for the 1982–1998 period compared to 1999–2015, while fall sea ice decline was larger in the later period. Land surface temperature trends for the 1982–1998 growing season are positive and for 1999–2015 are positive in May–June but weakly negative in July–August. Spring biweekly NDVI trends are positive and significant for 1982–1998, consistent with increasing open water and increased available warmth in spring. MaxNDVI trends for 1999–2015 display significant negative trends in May and the first half of June.

Numerous possible drivers of early growing season NDVI decline coincident with warming temperatures are discussed, including increased standing water, delayed spring snow-melt, winter thaw events, and early snow melt followed by freezing temperatures. Further research is needed to robustly identify drivers of the spring NDVI decline.

Ekman circulation in the Arctic Ocean: Beyond the Beaufort Gyre

Ma, B., M. Steele, and C.M. Lee, "Ekman circulation in the Arctic Ocean: Beyond the Beaufort Gyre," J. Geophys. Res., 122, 3358-3374, doi:10.1002/2016JC012624, 2017.

More Info

1 Apr 2017

Data derived from satellite-based observations, with buoy-based observations and assimilations, are used to calculate ocean Ekman layer transport and evaluate long-term trends in the Arctic Ocean over the period 1979–2014. The 36 year mean of upwelling (downwelling) is 3.7 ± 2.0 (–4.0 ± 2.2) Sv for the entire Arctic Basin, with ~0.3 Sv net downwelling contributed mostly by the Canadian region. With regard to long-term trends, the annual mean upwelling (downwelling) over the entire Arctic Basin is increasing at a linear rate of 0.92 (–0.98) Sv/decade. The Canada/Alaska coasts and Beaufort and Laptev Seas are regions of greatest Ekman transport intensification. The central Arctic Ocean and Lincoln Sea also have an increasing trend in transport. The Canadian and Eurasian regions each account for about half the total vertical Ekman variations in the Arctic Basin.

More Publications

In The News

Seattle climate scientists spread word on warming, skip politics

The Seattle Times, Jerry Large

Climate scientists at the University of Washington want to talk more about their work because it and public policy are intertwined. They stick to the science side of the equation, which they want the rest of us to understand better so that we can make informed decisions about climate change.

12 Jan 2017

Cyclone did not cause 2012 record low for Arctic sea ice

UW News and Information, Hannah Hickey

"The Great Arctic Cyclone of August 2012," is thought by some to have led to the historic sea ice minimum reached in mid-September 2013. UW research suggests otherwise.

31 Jan 2013

Study finds arctic cyclone had insignificant impact on 2012 ice retreat

The New York Times, Andrew C. Revkin

A new modeling study by the Applied Physics Laboratory at the University of Washington, replaying last summer%u2019s Arctic Ocean ice conditions with and without the storm, shows that the short-term influence of all that ice churning probably played almost no role in the final ice retreat in September.

31 Jan 2013

More News Items

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center