Campus Map

Jim Thomson

Principal Oceanographer

Associate Professor, Civil and Environmental Engineering





Research Interests

Environmental Fluid Mechanics, Ocean Surface Waves, Marine Renewable Energy (tidal and wave), Coastal and Nearshore Processes, Ocean Instrumentation


Dr. Thomson studies waves, currents, and turbulence by combining field observations and remote sensing techniques


B.A. Physics, Middlebury College, 2000

Ph.D. Physical Oceanography, MIT/WHOI, 2006


Stratified Ocean Dynamics of the Arctic — SODA

More Info

31 Oct 2016

Vertical and lateral water properties and density structure with the Arctic Ocean are intimately related to the ocean circulation, and have profound consequences for sea ice growth and retreat as well as for prpagation of acoustic energy at all scales. Our current understanding of the dynamics governing arctic upper ocean stratification and circulation derives largely from a period when extensive ice cover modulated the oceanic response to atmospheric forcing. Recently, however, there has been significant arctic warming, accompanied by changes in the extent, thickness distribution, and properties of the arctic sea ice cover. The need to understand these changes and their impact on arctic stratification and circulation, sea ice evolution, and the acoustic environment motivate this initiative.

Inner Shelf Dynamics

The inner shelf region begins just offshore of the surf zone, where breaking by surface gravity waves dominate, and extends inshore of the mid-shelf, where theoretical Ekman transport is fully realized. Our main goal is to provide provide improved understanding and prediction of this difficult environment. This will involve efforts to assess the influence of the different boundaries — surf zone, mid and outer shelf, air-water interface, and bed — on the flow, mixing and stratification of the inner shelf. We will also gain information and predictive understanding of remotely sensed surface processes and their connection to processes in the underlying water column.

15 Dec 2015

Measuring Vessel Wakes in Rich Passage, Puget Sound

APL-UW is using wave buoys to measure the wakes of Washington State DOT car ferries as they transit through Rich Passage. The objective is to assess the effectiveness of the speed reduction protocol through the passage, which is intended to minimize the vessel wake and minimize any subsequent changes to the shoreline.

22 Oct 2014

More Projects


Marine Renewable Energy: Kvichak River Project

At a renewable energy site in the village of Igiugig, Alaska, an APL-UW and UW Mechanical Engineering team measured the flow around an electricity-generating turbine installed in the Kvichak River. They used modified SWIFT buoys and new technologies to measure the natural river turbulence as well as that produced by the turbine itself. The turbine has the capacity to generate a sizable share of the village's power needs.

25 Sep 2014

Ferry-Based Monitoring of Puget Sound Currents

Acoustic Doppler Current Profilers are installed on two Washington State Department of Transportation ferries to measure current velocities in a continuous transect along their routes. WSDOT ferries occupy strategic cross-sections where circulation and exchange of Puget Sound and Pacific Ocean waters occurs. A long and continuous time series will provide unprecedented measurements of water mass movement and transport between the basins.

9 May 2014

DARLA: Data Assimilation and Remote Sensing for Littoral Applications

Investigators completed a series of experiments in April 2013 at the mouth of the Columbia River, where they collected data using drifting and airborne platforms. DARLA's remote sensing data will be used to drive representations of the wave, circulation, and bathymetry fields in complex near-shore environments.

5 Dec 2013

More Videos


2000-present and while at APL-UW

Measurements of directional wave spectra and wind stress from a Wave Glider autonomous surface vehicle

Thomson, J., J.B. Girton, R. Jha, and A. Trapani "Measurements of directional wave spectra and wind stress from a Wave Glider autonomous surface vehicle," J. Atmos. Ocean. Technol., EOR, doi:10.1175/JTECH-D-17-0091.1, 2017.

More Info

13 Dec 2017

Methods for measuring waves and winds from a Wave Glider Autonomous Surface Vehicle (ASV) are described and evaluated. The wave method utilizes the frequency spectra of orbital velocities measured by GPS, and the wind stress method utilizes the frequency spectra of turbulent wind fluctuations measured by ultrasonic anemometer. Both methods evaluate contaminations from vehicle motion. The methods were evaluated with 68 days of data over a full range of open ocean conditions, in which wave heights varied from 1 to 8 m and wind speeds varied from 1 to 17 m/s. Reference data were collected using additional sensors onboard the vehicle. For the waves method, several additional datasets are included which use independently moored Datawell waverider buoys as reference data. Bulk wave parameters are determined waverider buoys as reference data. Bulk wave parameters are determined within 5% error, with biases of less than 5%. Wind stress is determined within 4% error, with 1% bias. Wave directional spectra also compare well, although the Wave Glider results have more spread at low frequencies.

Tidal energy resource characterization in Chacao Channel, Chile

Guerra, M., R. Cienfuegos, J. Thomson, and L. Suarez, "Tidal energy resource characterization in Chacao Channel, Chile," Int. J. Mar. Energy, 20, doi:10.1016/j.ijome.2017.11.002, 2017.

More Info

1 Dec 2017

Chacao Channel is an energetic tidal channel located at the northernmost part of the Chilean Patagonia. The channel has been previously identified as a prospective site for tidal energy extraction, however there has been only a limited understanding of the tidal flows. A new set of field measurements distributed along Chacao Channel is presented here for tidal energy resource characterization, including tidal elevations, tidal currents (in space and time), and turbulence. The field data also are used to calibrate and validate a FVCOM hydrodynamic numerical model of the entire channel, which is then used for tidal energy resource assessment. Field measurements indicate that tidal elevation range increases eastward along the channel, that tidal currents exceed 4 m s-1 at some points within the channel, and that turbulence intensity ranges between 5 and 20%. The data and numerical model results are used to estimate the kinetic power density of the tidal currents at Chacao Channel, which is in average 5 kW m-2.

Hydrodynamic coefficients of heave plates, with application to wave energy conversion

Brown, A., J. Thomson, and C. Rusch, "Hydrodynamic coefficients of heave plates, with application to wave energy conversion," IEEE J. Ocean. Eng., EOR, doi:10.1109/JOE.2017.2762258, 2017.

More Info

3 Nov 2017

Wave energy converters (WECs) often employ submerged heave plates to provide reaction forces at depths below the level of wave motion. Here, two sets of heave plate experiments are described, at varying scale. First, the Oscillator uses a linear actuator to force laboratory scale (30.5-cm diameter) heave plates in sinusoidal motion. Second, the miniWEC buoy uses vessel wakes to force field scale (1.5-m diameter) heave plates in open water with realistic energy conversion (damping). The motion and forces are analyzed using the Morison equation, in which the hydrodynamic coefficients of added mass CM and drag CD are determined for each set of Oscillator and miniWEC experiments. Results show strong intracycle variations in these coefficients, yet constant hydrodynamic coefficients provide a reasonable reconstruction of the time series data. The two test scales are examined relative to the Keulegan–Carpenter number (KC), Reynold’s number (Re), and Beta number (β). The effects of asymmetric shape on hydrodynamic performance are found to be small.

More Publications

In The News

Partners in Extreme Wave Modeling

Engineering Out Loud Podcast, Jens Odegaard

How do you forecast and model huge waves in the open ocean? As part of the National Marine Renewable Energy Center, researchers at Oregon State University and the University of Washington are modeling and forecasting extreme waves to help inform wave energy technology.

25 Oct 2017

Wave Glider surfs across stormy Drake Passage in Antarctica

UW News, Hannah Hickey

The University of Washington sent a robotic surf board to ride the waves collecting data from Antarctica to South America.

20 Sep 2017

Validating tall tales of rogue waves

Hakai Magazine, Mara Johnson-Groh

Recently, scientists took to the seas, using sensors to monitor more than two million waves in a bid to identify the oceanic conditions that create rogue waves.

13 Mar 2017

More News Items



Record of Invention Number: 48200

Jim Thomson, Alex de Klerk, Joe Talbert


6 Nov 2017

SWIFT: Surface Wave Instrument Float with Tracking

Record of Invention Number: 46566

Jim Thomson, Alex De Klerk, Joe Talbert


24 Jun 2013

Heave Place Mooring for Wave Energy Conversion (WEC) via Tension Changes

Record of Invention Number: 46558

Jim Thomson, Alex De Klerk, Joe Talbert


19 Jun 2013

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center