APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jessica Noe

Mechanical Engineer III

Email

jnoe@apl.washington.edu

Phone

206-221-8015

Department Affiliation

Ocean Engineering

Education

Master of Science Mechanical Engineer, University of Washington, 2020

B.S Mechanical Engineering, University of Washington, 2017

Publications

2000-present and while at APL-UW

Performance of a Drifting Acoustic Instrumentation SYstem (DAISY) for characterizing radiated noise from marine energy converters

Polagye, B., C. Crisp, L. Jones, P. Murphy, J. Noe, G. Calandra, and C. Bassett, "Performance of a Drifting Acoustic Instrumentation SYstem (DAISY) for characterizing radiated noise from marine energy converters," J. Ocean Eng. Mar. Energy, EOR, doi:10.1007/s40722-024-00358-6, 2024.

More Info

12 Dec 2024

Marine energy converters can generate electricity from energetic ocean waves and water currents. Because sound is extensively used by marine animals, the radiated noise from these systems is of regulatory interest. However, the energetic nature of these locations poses challenges for performing accurate passive acoustic measurements, particularly with stationary platforms. The Drifting Acoustic Instrumentation SYstem (DAISY) is a modular hydrophone recording system purpose-built for marine energy environments. Using a flow shield in currents and mass–spring–damper suspension system in waves, we demonstrate that DAISYs can effectively minimize the masking effect of flow noise at frequencies down to 10 Hz. In addition, we show that groups of DAISYs can utilize time-delay-of-arrival post-processing to attribute radiated noise to a specific source. Consequently, DAISYs can rapidly measure radiated noise at all frequencies of interest for prototype marine energy converters. The resulting information from future operational deployments should support regulatory decision-making and allow technology developers to make design adjustments that minimize the potential for acoustic impacts as their systems are scaled up for utility-scale power generation.

APL-UW Field-Scale Axial Flow Turbine: Design and Specifications

Bassett, C., J. Burnett, K. Van Ness, H. Wood, J. Dosher, B. Cunningham, J. Noe, and T. Tran, "APL-UW Field-Scale Axial Flow Turbine: Design and Specifications," Technical Report, APL-UW TR 2402, Applied Physics Laboratory, University of Washington, Seattle, September 2024, 27 pp.

More Info

29 Aug 2024

Axial flow turbines designed to generate power from underwater currents (tidal and riverine) are similar to the commonly observed wind turbines. With support from U.S. Naval Sea Systems Command, engineers at the Applied Physical Laboratory of the University of Washington (APL-UW) have designed and fabricated a one-meter diameter axial flow turbine for use in APL-UW’s marine energy research program. The system, referred to as the AFT (axial flow turbine), is designed for deployment from R/V Russell Davis Light, where the vessel, under propulsion, is used to simulate naturally occurring currents for power generation. This report summarizes the AFT’s mechanical and electrical design and is intended as a reference to support research efforts performed using the system. Encoders and six-axis load cells installed on the driveshaft and at the root of one of the rotor’s three blades, allow for characterization of the forces and torques generated during operation. The system was designed for reliability and to acquire scientific-quality data to advance studies of axial flow turbines. Thus, system components selected in the design process are not intended to maximize system efficiency and power extraction.

Adaptable and distributed sensing in coastal waters: Design and performance of the μFloat system

Harrison, T.W., C. Crisp, J. Noe, J.B. Joslin, C. Riel, M. Dunbabin, J. Neasham, T.R. Mundon, and B. Polagye, "Adaptable and distributed sensing in coastal waters: Design and performance of the μFloat system," Field Rob., 3, 516-543, doi:10.55417/fr.2023016, 2023.

More Info

1 Mar 2023

Buoyancy-controlled underwater floats have produced a wealth of in situ observational data from the open ocean. When deployed in large numbers, or "distributed arrays," floats offer a unique capacity to concurrently map 3D fields of critical environmental variables, such as currents, temperatures, and dissolved oxygen. This sensing paradigm is equally relevant in coastal waters, yet it remains underutilized due to economic and technical limitations of existing platforms. To address this gap, we developed an array of 25 μFloats that can actuate vertically in the water column by controlling their buoyancy, but are otherwise Lagrangian. Underwater positioning is achieved by acoustic localization using low-bandwidth communication with GPS-equipped surface buoys. The µFloat features a high-volume buoyancy engine that provides a 9% density change, enabling automatic ballasting and vertical control from fresh to salt water (~3% density change) with reserve capacity for external sensors.

In this paper, we present design specifications and field benchmarks for buoyancy control and acoustic localization accuracy. Results demonstrate depth-holding accuracy within ±0.2 m of target depth in quiescent flow and ±0.5 m in energetic flows. Underwater localization is accurate to within ±5 m during periods with sufficient connectivity, with degradation in performance resulting from adverse sound speed gradients and unfavorable spatial distributions of surface buoys. Support for auxiliary sensors (<10% float volume) without
additional control tuning is also demonstrated. Overall performance is discussed in the context of potential use cases and demonstrated in a first-ever array-based three-dimensional survey of tidal currents.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close